Minnesota Dual-Training Pipeline Competency Model for Advanced Manufacturing Occupation: Machinist/Tool and Die Maker

Employer-Specific Requirements	Occupation-Specific Competencies*
	Costs of parts and tooling Tooling types Preventative maintenance - machine tools maintenance Bench work and hand tools
	Level 1Level 2Manual millingAdvanced inspectionManual turning operationsAdvanced manual millingManual grinding skillsAdvanced turningInspection practicesAdvanced grinding skillsTool makerAdvanced cutting toolEDMknowledge
Industry-Sector Techn	nical Competencies*
Machining introduction Shop math and To	ol and die setup and rogramming basics tool Metallurgy Material science Inspection
Industry-Wide Techn	ical Competencies
design & Production installation chain c	Quality Issurance, ontinuous provement Manuf. Safety, health security and environment Analysis intro
Workplace Co	ompetencies
ress Teamwork Adaptability Technical Plann and work and flexibility instructions organi	d decision with tools, and practices
Academic Co	mpetencies
Basic Readi ce computer Mathematics and skills writin	l listening & analytic literacy
Personal Effective	eness Competencies

Based on: Advanced Manufacturing Competency Model Employment and Training Administration, U.S. Dept. of Labor, April 2010.

* Minnesota Dual-Training Pipeline recommends the Industry-Sector Technical Competencies as formal training opportunities (provided through related instruction) and the Occupation-Specific Competencies as on-the-job training opportunities.

DUAL-TRAINING PIPELINE

Competency Model for Machinist / Tool and Die Maker

Machinist/tool and die maker – A skilled craftsperson who makes, repairs, and modifies custom made, prototype or special tools, dies, jigs, fixtures and gauges to very specific and precise dimensions. The work involves the operation of lathes, grinders, milling and boring machines. They must read and interpret blueprints, manuals, and other work instructions of tools, dies, prototypes or models. They compute and verify dimensions, sizes, shapes, and tolerances of workpieces. Machinists operate a variety of computer-controlled and mechanically controlled machine tools. They must plan the sequence of operations from set-up to finished product making sure that machined parts conform to specifications by using precision measuring instruments. They must work safely to prevent on-the-job injuries, which includes wearing personal protective equipment. These professionals identify any flaws in the finish or operation of machined parts and take corrective action while working independently or as a member of a team on a variety of different projects and tasks.

Industry-Sector Technical Competencies

Related Instruction for dual training means the organized and systematic form of education resulting in the enhancement of skills and competencies related to the dual trainee's current or intended occupation.

- **Machining introduction** Learn basic machining operations including safety, MSDS, measuring tools and use of drill presses and band saws.
- Blueprint reading Knowledge in reading and understanding industrial prints such as GD&T.
- Shop math and measurement Training in basic math including linear measurement, metrics and beginning algebra, as well as SPC (statistics) used for data collection.
- **Tool and die setup and programming basics** Exposure to manual programming of tools. Learn types of tool and die controls, machinery, programming formats and basic terminology.
- **Design of tooling** Determining the time it will take for a job to run and how to develop a part blank allowance for drawing and bending.
- **Regulations** Understanding of industry regulations (such as ISA, GMP and AS) and how to interpret work instructions, standard operating procedures and work instructions based on regulations.

- Machine tool theory Learn to complete the processes required for manufacturing a precision part, use standard shop safety practices, set-up and operate standard manufacturing machines, complete accurate lay-outs, explain applications of hand tools and use correctly and use basic measuring tools.
- Material science Basic understanding of material science or plastics and/or metallurgy.
- **Molding** Demonstrated knowledge of the process used in manufacturing to shape materials.
- **Metallurgy** Understanding of the physical and chemical behavior of metallic elements, their intermetallic compounds, and their mixtures (alloys). Includes: Materials stamped and selection of tool steels for tooling.
- **Inspection** Know the proper methods and instruments used to effectively inspect parts in the shop, including using instruments such as the caliper, micrometer, and CMM.

Occupation-Specific Competencies

On-the-Job Training (OJT) is hands-on instruction completed at work to learn the core competencies necessary to succeed in an occupation. Common types of OJT include job shadowing, mentorship, cohort-based training, assignment-based project evaluation and discussion-based training.

- **Costs of parts and tooling** demonstrate the ability to obtain or provide quotes of costs for parts and tooling
- **Tooling types** demonstrate knowledge of the different types of tooling, including draw dies, coining, blanking, progressive.
- **Preventative maintenance machine tools maintenance –** Practice industry approved procedures for preventative maintenance on machines and tools.
- Bench work and hand tools Knowledge of the various tools, methods, and procedures for common machine shop bench work and hand tool work.

Level 1

- **Manual milling** Display basic operation of the vertical and horizontal milling machines and the ability to use cutting tools and holders, setups, spindles and arbors, work holding methods.
- **Manual turning operations** Demonstrate lathe applications such as understanding turning safety, calculating speeds and feeds, using various tools and tool holders, identifying basic tool geometry, and the use of common lathe spindle tooling.
- Manual grinding skills Use surface grinders with proper set up techniques and grinding processes.

- EDM (Wire/Plunge) Demonstrate basic understanding of Electrical Discharge Machining.
- **Tool maker** Demonstrated ability to perform advanced turning and advanced manual milling.
- Inspection Practices Demonstrate the proper methods and instruments used to effectively
 inspect parts in the shop, including using instruments such as the caliper, micrometer, and
 CMM.

Level 2

- Advanced inspection Able to use measuring instruments relating to state-of-the-art manufacturing environments, such as coordinate measuring machine and calibration. Understanding of Quality Control, TQM, and SPC processes as they relate to manufacturing environments.
- Advanced manual milling –Use mill for advanced techniques such as squaring a block, perform angle layouts with various methods including a sign bar. Perform simple key seat and slotting operations.
- Advanced turning Ability to operate lathe for advanced processes such as form radius, singlepoint isometric threads, turn spherical radius, use a radius gauge, as well as advanced taper techniques and work support devices.
- Advanced grinding skills Demonstrate advanced techniques of grinding including use of sine bars and chucks, sine bars, gage blocks, wheel balancers, various grinding wheels and diamond dressers.
- Advanced cutting tool knowledge Demonstrated ability to perform advanced operations of a drill press, vertical milling machine, engine lathe, surface grinder and saws.

Updated July 2022