Minnesota Dual-Training Pipeline
Competency Model for Information Technology
Occupation: Data Science/Artificial Intelligence Machine Learning Specialist

Employer-Specific Requirements

Occupation-Specific Competencies
- Artificial intelligence systems design and implementation
- Machine learning model development
- Data management and model deployment
- Deep learning frameworks
- Technical security
- Development for infrastructure
- High-performance computing
- Intellectual property law

Industry-Sector Technical Competencies*
- Data analytics and tools
- Dataset information derivation and analysis
- Algorithm creation and deep networks
- Supervised and unsupervised machine learning algorithms
- Programming languages
- Data types
- Statistical decision theory
- Effectiveness evaluation

Industry-Wide Technical Competencies
- Principles of information technology
- Databases and applications
- Networks and languages
- Software development and management
- User and customer support
- Compliance
- Risk management, security, and information assurance

Workplace Competencies
- Business fundamentals
- Teamwork
- Innovative thinking
- Planning and organizing
- Problem solving and decision making
- Working with tools and technology

Academic Competencies
- Reading
- Writing
- Mathematics
- Science
- Communication
- Critical and analytic thinking
- Fundamental IT user skills

Personal Effectiveness Competencies
- Interpersonal skills and teamwork
- Integrity
- Professionalism
- Initiative
- Dependability and reliability
- Adaptability and flexibility
- Lifelong learning

Based on: Information Technology Competency Model Employment and Training Administration, United States Department of Labor, September 2012.

*Pipeline recommends the Industry Sector Technical Competencies as formal training opportunities (provided through related instruction) and the Occupation-Specific Competencies as on-the-job training opportunities.
Competency Model for Data Science/Artificial Intelligence Machine Learning Specialist

Data Science/Artificial Intelligence Machine Learning Specialist — a professional that sources, cleans and processes data to extract meaning for analytical purposes. Establishes and achieves objectives using techniques associate with AI reasoning and uncertainty. Applies logic, probability analysis, and machine-learning concepts to problem-solving initiatives.

Industry-Sector Technical Competencies

- **Algorithm creation** – Be able to design a set of instructions to perform a specific task.
- **Software systems and support apps** – Ability to design, develop, and modify software systems. Knowledge of system support apps such as Jupyter notebooks, etc.
- **Dataset information derivation and analysis** – Understand the relevant methods for performing data collection, representation, transformation, and data-driven decision making.
- **Data analytics and tools** – Understand the science of examining raw data with the purpose of discovering knowledge. Use of tools such as Power BI, Tableau, etc.
- **Supervised and unsupervised machine learning algorithms** – Be able to discuss both the theoretical underpinnings of machine learning techniques and experience in implementing them.
- **Deep networks** – Understand the artificial neural network (ANN) with multiple layers between the input and output layer consisting of neurons, synapses, weights, biases, and functions.
- **Programming languages** – Understand high-level general-purpose programming languages such as Python, Sequel, R, etc. These aim to help programmers write clear, logical code for small and large-scale projects.
- **Data types** – Understand particular kinds of data items, as defined by the values it can take, the programming language used, or the operations that can be performed on it.
- **Effectiveness evaluation** – Know how to apply machine learning to a given problem.
- **Statistical decision theory** – Understand how this theory brings together psychology, statistics, philosophy, and mathematics to analyze the decision-making process.
Occupation-Specific Competencies

• **Artificial Intelligence systems design and implementation** – Understand how to identify the problem, prepare data, choose algorithms, train the algorithms, choose a particular programming language and run-on selected platform.

• **Machine learning model development** – Be able to define the objective, collect, and prepare data, choose the model, train the machine model, evaluate, prediction or inference.

• **Data management and model deployment** – Know how to make the model available for other collaborators to quality test. Once validated, deployment is the process of configuring an analytic asset for integration with other applications or access by business users to serve the production workload at scale.

• **Deep learning frameworks** – Understand PyTorch or TensorFlow which offer building blocks for designing, training and validated deep neural networks.

• **Technical security** – Understand security for storage and network service delivery.

• **Development for infrastructure** – Know how to code for multiple clouds.

• **High-performance computing** – Understand the practice of aggregating, computing power in a way that delivers much higher performance that one could get out of a typical desktop computer or workstation to solve large problems in science, engineering, or business.

• **Intellectual property law** – Know the multiple areas of law that govern the ownership and rights to digital “products of the mind”.

Data Science/AI Machine Learning Specialist Occupational Training Plan

<table>
<thead>
<tr>
<th>List Course/Training Name and Title</th>
<th>Description of Courses and/or Training Program</th>
<th>List Responsible Provider: Company, College, Trainer, or other</th>
<th>Anticipated Completion Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Related Instruction Competencies</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Algorithm Creation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Software Systems and Support Apps</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dataset Information Derivation and Analysis</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Data Analytics and Tools</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Supervised and Unsupervised Machine Learning Algorithms</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Deep Networks</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Programming Languages</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Data Types</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Effectiveness Evaluation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Statistical Decision Theory</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>On-The-Job Training Competencies</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Artificial Intelligence Systems Design and Implementation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>--</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Machine Learning Model Development</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Data Management and Model Deployment</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Deep Learning Frameworks</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Technical Security</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Development for Infrastructure</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>High-Performance Computing</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intellectual Property Law</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Updated March 2022