APPENDIX E, WORKSHEET E-1 (Fuel Gas Code).

IFGC Appendix E, Worksheet E-1

Residential Combustion Air Calculation Method

(for Furnace, Boiler, and/or Water Heater in the Same Space)

Step 1: Complete vented combustion appliance information.

Furnace/Boiler:					
Draft Hood (Not fan assisted)	Fan Assisted & Power Vent	Direc	t Vent lı	nput:	_ Btu/hr
Water Heater:					
Draft Hood (Not fan assisted)	Fan Assisted & Power Vent	Dire	ct Vent lı	nput:	_ Btu/hr
Step 2: Calculate the volu	me of the Combustio	n Appliance Space	e (CAS) containin	g combustion	appliances.
The CAS includes all space compliant openings.	es connected to one	another by code	C	CAS volume:	ft³
Step 3: Determine Air Ch	anges per Hour (ACH	H) ¹			
Default ACH values have year of construction or AC				(KAIR Method	l). If the
Step 4: Determine Requir	red Volume for Comb	oustion Air.			
4a. Standard Meth	od.				
Total Btu/hr input of all combustion appliances (DO NOT COUNT DIRECT VENT APPLIANCES)			Input:	Btu/hr	
Use Standard Method column in Table E-1 to find Total Required Volume (TRV)			TRV:	ft ³	
If CAS Volume (fro	m Step 2) <i>is greater</i>	than TRV then no	outdoor opening	s are needed.	
If CAS Volume (fro	m Step 2) <i>is less tha</i>	an TRV then go to	STEP 5.		
4b. Known Air Infill	tration Rate (KAIR) M	lethod			
	of all fan-assisted and DIRECT VENT APPL		nces Input:	Btu/hr	
	Appliances column in Fan Assisted (RVFA)	Table E-1 to find	RVFA: _	ft ³	
Total Btu/hr of all n	Total Btu/hr of all non-fan-assisted appliances			Btu/hr	

Use Non-Fan-Assisted Appliances column in Table E-1 to Find Required Volume Non-Fan-Assisted (RVNFA) RVNFA:ft ³					
Total Required Volume (TRV) = RVFA + RVNFA TRV = + = ft ³					
If CAS Volume (from Step 2) is greater than TRV then no outdoor openings are needed.					
If CAS Volume (from Step 2) is less than TRV then go to STEP 5.					
Step 5: Calculate the ratio of available interior volume to the total required volume.					
Ratio = CAS Volume (from Step 2) divided by TRV (from Step 4a or Step 4b)					
Ratio = / =					
Step 6: Calculate Reduction Factor (RF).					
RF = 1 <i>minus</i> Ratio RF = 1 =					
Step 7: Calculate single outdoor opening as if all combustion air is from outside.					
Total Btu/hr input of all Combustion Appliances in the same CAS (EXCEPT DIRECT VENT) Input: Btu/hr					
Combustion Air Opening Area (CAOA):					
Total Btu/hr <i>divided by</i> 3000 Btu/hr per in ²					
CAOA = / 3000 Btu/hr per in 2 =in 2					
Step 8: Calculate Minimum CAOA					
Minimum CAOA = CAOA <i>multiplied by</i> RF					
Minimum CAOA = x =in ²					
Step 9: Calculate Combustion Air Opening Diameter (CAOD)					
CAOD = 1.13 multiplied by the square root of Minimum CAOA					
CAOD = 1.13 Minimum CAOA =in					

¹ If desired, ACH can be determined using ASHRAE calculation or blower door test. Follow procedures in Section G304.