

Software Developer - Software developers design, build and test computer systems that help
organizations and equipment to work more effectively. Examples of work include information
databases, programs that control robotic systems, and cloud and mobile applications.

Industry-Sector Technical Competencies

• Bash Shell Scripting – Knowledge of scripting a UNIX shell or command language.
• Software Testing – Knowledge of how to evaluate software to make sure it meets

specified requirements. Also to identify any gaps, errors or missing requirements.
• Software Analysis and Design – Understanding of modeling and its central role in

eliciting, understanding, analyzing and communicating software requirements,
architecture and design.

• Programming – Training to create programs by writing "code" in a programming
language.

• Service Oriented Architectures – Understand the architectural pattern in computer
software design in which application components provide services to other components
via a communications protocol, typically over a network.

• Logic – Training in the part of the program that encodes the real-world business rules that
determine how data can be created, displayed, stored, and changed.

• Object Orientated Programming – Understanding this type of programming in
which programmers define not only the data type of a data structure, but also the types of
operations (functions) that can be applied to the data structure.

• Databases – Knowledge of implementing data models and database designs to ensure
security and data integrity in database software.

• Version Control – Understanding of the system that records changes to a file or set of
files over time so that you can recall specific versions later.

• Data Structures & Algorithms – Knowledge of the use of data structures and algorithms
in software programming.

• Operating Systems – Understand the function of operating systems and how to properly
create software to interact with them.

• Unified Modeling Language – Understanding of the general-purpose modeling
language for software engineering, designed to provide a standard way to visualize the
design of a system.

https://en.wikipedia.org/wiki/Architectural_pattern
https://en.wikipedia.org/wiki/Communications_protocol
https://en.wikipedia.org/wiki/Business_rule
https://en.wikipedia.org/wiki/Create,_read,_update_and_delete
http://www.webopedia.com/TERM/P/program.html
http://www.webopedia.com/TERM/P/programmer.html
http://www.webopedia.com/TERM/D/data_type.html
http://www.webopedia.com/TERM/D/data_structure.html
http://www.webopedia.com/TERM/F/function.html
https://en.wikipedia.org/wiki/Modeling_language
https://en.wikipedia.org/wiki/Modeling_language
https://en.wikipedia.org/wiki/Software_engineering

• Knowledge of Encryption – Understanding of how encryption functions and how to work
with it within the software development environment.

• Software Development Life Cycle – Knowledge of Waterfall and Agile approaches to
software development and when to use the appropriate model.

• Client/Server Architecture – Knowledge of the Client/Server Architecture model and how
to develop software for such a system.

Occupation-Specific Competencies

• Unit & Integration Testing – Able to test various computing scenarios for units and
integration.

• Coordinate Software Installation – Assist with software installation for the organization
and individual user.

• Server Automation Tools – Know how to use applications which automate computing
functions.

• Software Testing (On The Job) – Ability to run tests on software and test for
compatibility and functionality issues.

• Learn and Implement Design Patterns – Use design patterns for problem solving in
programming.

• Bug Fixing/De-Bugging – Ability to locate, fix or bypass errors (bugs) in code or
devices.

• Quality Assurance – Use appropriate methods to verify overall quality of software design
and system work.

• Integrated Development Environment – Use the IDE application for software
development.

• Monitor Equipment Functioning – Monitor system in order to review information to
detect or assess problems.

• Continuous Integration – Merge developer working copies with shared mainline several
times a day.

• Translating Technical Docs Into Actionable Work – Understand how to create working
process documents from very technical IT documents.

• Data Analysis – Store, retrieve and manipulate data for analysis of system capabilities
and requirements.

• Customer Consultation - Work with internal and external customers to gather information
regarding software requirements and customization.

• Software Systems – Demonstrate ability to design, develop and modify software systems.
• Defensive Programming – Ability to design model intended to ensure the continuing

function of a piece of software under unforeseen circumstances.
• Cross-Functional Teams – Understand the software development role while working with

cross-functional teams.

Software Developer Occupational Competency Training Plan
Related Instruction means an organized and systematic form of instruction designed to provide the
apprentice with the knowledge of the theoretical and technical subjects related to the apprentice's trade
of occupation, or industrial courses or, when of equivalent value, by correspondence, electronic media,
or other forms or self-study approved by the commissioner.

 Course Course Description Credit/Non-
Credit

Hours
Spent on
Competency

Bash Shell Scripting

Software Testing

Software Analysis &
Design

Programming

Service Orientated
Architectures

Logic

 Object Orientated
Programming

Databases

Version control

Data Structures &
Algorithms

Operating Systems

Unified Modeling
Language

Knowledge of Encryption

 Waterfall & Agile
Software Dev. Life Cycle

Client/Server Architecture

On-The-Job Training is the work experience and instruction. Training experience need not be in the
exact order as listed below.
 Trainer/Instructor Name of person

responsible for verifying
competency mastery

Hours
Spent on
Competency

Unit & Integration
Testing

Coordinates Software
Installation

Server Automation Tools

Software Testing (On the
Job)

Learn and Implement
Design Patterns

Bug Fixing/De-Bugging

Quality Assurance

Integrated Development
Environment

Monitor Equipment
Functioning

Continuous Integration

Translating Technical
Docs into Actionable
Work

Store, Retrieve &
Manipulate Data for
Analysis of System
Capabilities and
Requirements

Customer Consultation re:
System Design &
Maintenance

Design, Develop &
Modify Software Systems
- Hands-On

Defensive Programming

Understanding
Developments Role in
Cross-functional Teams

